Protein Thiol Modifications Visualized In Vivo

نویسندگان

  • Lars I Leichert
  • Ursula Jakob
چکیده

Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H(2)O(2)-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H(2)O(2) and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global methods to monitor the thiol-disulfide state of proteins in vivo.

Cysteines play an important role in protein biochemistry. The unique chemical property and high reactivity of the free thiol group makes reduced cysteine a versatile component of catalytic centers and metal binding sites in many cytosolic proteins and oxidized cystine a stabilizing component in many secreted proteins. Moreover, cysteines readily react with reactive oxygen and nitrogen species t...

متن کامل

Thiol-based regulatory switches.

Thiol-based regulatory switches play central roles in cellular responses to oxidative stress, nitrosative stress, and changes in the overall thiol-disulfide redox balance. Protein sulfhydryls offer a great deal of flexibility in the different types of modification they can undergo and the range of chemical signals they can perceive. For example, recent work on OhrR and OxyR has clearly establis...

متن کامل

Thiol-based redox switches in eukaryotic proteins.

For many years, oxidative thiol modifications in cytosolic proteins were largely disregarded as in vitro artifacts, and considered unlikely to play significant roles within the reducing environment of the cell. Recent developments in in vivo thiol trapping technology combined with mass spectrometric analysis have now provided convincing evidence that thiol-based redox switches are used as molec...

متن کامل

N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administer...

متن کامل

The Expanding Landscape of the Thiol Redox Proteome.

Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sulfonylation (-SO(3)H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2004